Распечатать

Детали & Материалы

Аддитивные технологии в российской промышленности

12.05.2012
AF-технологии – эффективное звено современного производства

Аддитивные технологии (AF – Additive Manufacturing), или технологии послойного синтеза, сегодня одно из наиболее динамично развивающихся направлений "цифрового" производства. Они позволяют на порядок ускорить НИОКР и решение задач подготовки производства, а в ряде случаев уже активно применяются и для производства готовой продукции.

В недалеком прошлом, лет 10–15 назад, аддитивные технологии использовались преимущественно в традиционно технологически продвинутых отраслях – автомобильной, авиационной и аэрокосмической промышленностях, а также в приборостроении и медицине, где тандем "время – деньги" всегда имел особое значение.

В эпоху инновационной экономики время, затраченное на производство товара, является важнейшим фактором успеха или неуспеха бизнеса. Даже качественно произведенный товар может оказаться невостребованным, если рынок к моменту выхода новой продукции уже насыщен подобными товарами компаний-конкурентов. Поэтому все больше направлений промышленности активно осваивают AF-технологии. Все чаще их используют научно-исследовательские организации, архитектурные и конструкторские бюро, дизайн-студии и просто частные лица для творчества или в качестве хобби. Во многих колледжах и университетах аддитивные машины, или, как их часто называют, 3D-принтеры являются неотъемлемой частью учебного процесса для профессионального обучения инженерным специальностям.

Существует множество технологий, которые можно назвать аддитивными, объединяет их одно: построение модели происходит путем добавления материала (от англ. аdd – "добавлять") в отличие от традиционных технологий, где создание детали происходит путем удаления "лишнего" материала.

Классической и наиболее точной технологией является SLA-технология (от Stereolithography Apparatus), или стереолитография, – послойное отверждение жидкого фотополимера лазером.

Существует много видов фотополимерных композиций, поэтому спектр применения прототипов, полученных по SLA-технологии, очень широк: макеты и масштабные модели для аэро- и гидродинамических испытаний, литейные и мастер-модели, дизайн-модели и прототипы, функциональные модели и т. д.

Селективное лазерное спекание – SLS-технология (Selective Laser Sintering), SelectiveLaserMelting) – еще одно важное направление аддитивных технологий.

Здесь строительным (модельным) материалом являются сыпучие, порошкообразные материалы, а лазер является не источником света, как в SLA-машинах, а источником тепла, посредством которого производится сплавление частичек порошка. В качестве модельных материалов используется большое количество как полимерных, так и металлических порошков.

Порошкообразный полиамид применяется в основном для функционального моделирования, макетирования и изготовления контрольных сборок. Полистирол используется для изготовления литейных выжигаемых моделей.

Отдельным направлением является послойное лазерное спекание (сплавление) металлопорошковых композиций. Развитие этого направления AF-технологий стимулировало и развитие технологий получения порошков металлов. На сегодняшний день номенклатура металлических композиций имеет широкий спектр материалов на основе Ni и Co (CoCrMO, Inconel, NiCrMo), на основе Fe (инструментальные стали: 18Ni300, H13; нержавеющая сталь: 316L), на основе Ti (Ti6-4, CpTigr1), на основе Al (AlSi10Mg, AlSi12). Производятся порошки бронз, специальных сплавов, а также драгметаллов – главным образом для нужд дентальной медицины.

Из металлических порошков "выращивают" заготовки пресс-форм, специальные инструменты, оригинальные детали сложной конфигурации, которые затруднительно или невозможно получить литьем или механообработкой, импланты и эндопротезы и многое другое. Уже сейчас при штучном и мелкосерийном производстве зачастую становится экономически выгодным "вырастить" небольшую партию деталей на SLS-машине, чем изготавливать литейную или штамповую оснастку. В сочетании с HIP (Hot Isostatic Pressing – горячее изостатическое прессование) и соответствующей термообработкой такие детали не только не уступают литым или кованым изделиям, но и превосходят их по прочности на 20–30%.

Очень широкие перспективы открываются для еще одной аддитивной технологии – технологии "струйной печати" – InkJet- или PolyJet-технологии. Эта технология предполагает нанесение модельного материала или связующего состава с помощью струйных головок. Особый интерес InkJet-технологии представляют для литейного дела.

Они позволяют "выращивать" непосредственно литейные формы, т. е. "негатив" детали, и исключить стадии изготовления формовочной оснастки – мастер-модели и литейной модели. Компания ExOne (и ее дочернее предприятие ProMetal GmbH) выпускает машины типа S-Max, которые позиционируются не как "прототипирующие машины", а как вполне "рядовое" технологическое индустриальное оборудование, устанавливаемое в общей технологической цепи производства не только опытной, но и серийной продукции. Практически все автомобильные компании мира обзавелись такими машинами. Оно и понятно – с их помощью стало возможным не в разы, а на порядок сократить время прохождения НИОКР по критически важным для автостроителей позициям – литейным деталям: блоки и головки цилиндров двигателей, мосты и коробки передач, деталям, на изготовление которых в традиционном опытном производстве тратились месяцы, а с учетом экспериментальной доводки и подготовки производства – многие месяцы. Теперь конструктор может увидеть свой новый двигатель на испытательном стенде не через полгода, а через две недели после завершения технического проекта.

Сегодня в России существует множество компаний, оказывающих услуги по прототипированию, однако в основном это небольшие предприятия, обладающие одним-двумя недорогими 3D-принтерами, способными выращивать несложные детали. Связано это с тем, что высокотехнологичное оборудование, способное обеспечить высокое качество изделий, стоит дорого и требует для работы и обслуживания квалифицированного, специально обученного персонала. Далеко не каждая компания может себе это позволить, ведь для покупки необходимо четко понимать, каким образом и насколько эффективно это оборудование будет использоваться, будет ли оно загружено работой. Слабостью таких компаний является отсутствие комплексности решения задач. В лучшем случае дело ограничивается оказанием достаточно простой услуги – изготовлением прототипа или модели тем или иным способом. Тогда как AF-технологии – это не только и не столько 3D-принтер, но важная часть 3D-среды, в которой происходит рождение нового продукта – от замысла конструктора до материализации его идей в серийном производстве. Среда, в которой новый продукт создается, "живет", эксплуатируется, ремонтируется вплоть до завершения "жизненного цикла" этого продукта.

Поэтому для полноценного использования AF-технологий нужно создать эту среду: освоить 3D-проектирование и моделирование, CAE- и САМ-технологии, технологии оцифровки и реинжениринга, сопутствующие технологии, включая и вполне традиционные, но переформатированные под 3D-среду. Причем освоить не в отдельно взятом университете или крупной заводе – такие есть промышленностью в целом на всех уровнях – этого нет даже в отдельно взятой, например, авиационной или автомобильной промышленности. Тогда и AF-технологии будут выглядеть не экзотическими изысками, а вполне естественным и эффективным звеном общей 3D-среды создания, производства и жизненного цикла изделия.

Существуют на рынке и крупные компании, обладающие оборудованием высокого уровня, которые, как правило, решают достаточно сложные производственные задачи и оказывают более широкий спектр полезных услуг, сопутствующих прототипированию, способных от начала до конца провести НИОКР и проконтролировать качество работ на каждом этапе. К таким предприятиям можно отнести ФГУП "НАМИ", АБ "Универсал", НПО "Салют", ОАО "НИАТ" (Москва), УМПО (Уфа), НИИ "Машиностроительные Технологии", (СПбГПУ), ОАО "Тушинский машиностроительный завод" и ряд других. Однако такой комплексный подход по силам далеко не каждому предприятию, особенно в условиях безучастной позиции со стороны государства.

В целом ситуация с внедрением AF-технологий в российскую промышленность остается крайне неблагополучной. Ученые, инженеры и технологи не нашли нужных слов, чтобы привлечь внимание государства к опасному отставанию в абсолютно необходимой для отечественной промышленности инновационной сфере. Не нашли аргументов, чтобы убедить власти в необходимости разработки национальной программы развития аддитивных технологий, создания отечественной индустрии AF-машин. Россия практически не участвует в международных организациях, оказывающих значительное влияние на развитие AF-технологий в мире.

Ключевыми проблемами при внедрении AF-технологий в первую очередь являются кадры, которые, как известно, решают все; собственно 3D-машины, высококлассное AF-оборудование, которое невозможно приобрести и невозможно создать без целевой поддержки со стороны правительства в той или иной форме (что, кстати, и делается за рубежом в подавляющем большинстве случаев); материалы – отдельная и сложная проблема междисциплинарного характера, решение которой опять-таки целиком и полностью зависит от качества управления процессом со стороны государства. Это неподъемные для отдельной отрасли задачи. Это проблема, которая может быть решена только при условии целенаправленного взаимодействия высшей школы, академической и отраслевой науки.

Прекрасным примером "рыночного вмешательства" государства в решение сложных технологических задач является литейный завод ACTech, построенный во Фрайбурге (недалеко от Дрездена) в конце 90-х годов в период ренессанса Восточных территорий. Завод совсем небольшой по нашим меркам – всего 6500 кв. метров общей площади, построен с иголочки, в чистом поле и был оснащен самым передовым технологическим оборудованием, главной фишкой которого были AF-машины для выращивания песчаных форм (от компании EOS, Мюнхен). Это был, пожалуй, первый пример комплексного подхода – завод был оснащен современным оборудованием для реальной работы в 3D-среде: AF-машины, измерительная техника, ЧПУ-станки, плавильное, литейное и термическое оборудование. В настоящее время там работают около 230 чел., 80% которых – ИТР и менеджмент. Теперь это один из самых известных заводов с мировым именем, клиентами которого являются практически все ведущие автомобильные компании Германии, многие европейские и американские авиационные фирмы. На завод достаточно передать 3D-файл будущего изделия и описать задачу: материал, количество, желательные сроки изготовления и что вы хотите получить – отливку или полностью обработанную деталь, от этого зависят сроки выполнения заказа – от 7 дней до 8 недель. Примечательно, что около 20% заказов – это единичные детали, около 40% составляют заказы на 2–5 деталей. Почти половина отливок – чугун; примерно треть – алюминий; остальное – сталь и другие сплавы. Специалисты завода активно сотрудничают с фирмами – изготовителями AF-оборудования, ведут совместные НИР с университетами, завод является и успешным коммерческим предприятием, и полигоном для отработки новых технологических процессов.

Жизненный цикл нового изделия.
Работа проведена для ЗАО НПО "Турботехника"

Рынок аддитивных технологий в России развивается, но происходит это очень медленно, поскольку, чтобы вывести эти технологии на должный уровень, необходима поддержка государства. При должном внимании к внедрению AF-технологий они могут значительно повысить скорость реагирования на потребности рынка и экономическую эффективность многих отраслей промышленности.

Кирилл Казмирчук, заместитель директора НИИ "Машиностроительные технологии", СПбГПУ
Вячеслав Довбыш, заведующий лабораторией вакуумного литья металлов и полимеров НИИ "НАМИ"

Фотографии и материалы предоставлены авторами

Детали & Материалы 18.10.2019 Мировой производитель приводных ремней – Megadyne объявил о приобретении итальянской компании SATI SpA, специализирующийся на создании компонентов силовых передач.
Детали & Материалы 07.10.2019 Научный центр ИЛИСТ (Институт лазерных и сварочных технологий), входящий в «Санкт-Петербургский государственный морской технический университет», разрабатывает технологии прямого лазерного выращивания и ремонтной лазерной наплавки высокопрочных деталей.
Детали & Материалы 06.09.2019 Новые разработки в области материалов для авиакосмической и других высокотехнологичных отраслей представил завод порошковой металлургии «ПОЛЕМА». По словам начальник отдела исследований и развития предприятия Анастасии Кубановой, успешно завершились испытания порошки-аналоги марок 316L и Inconel 718
Электропривод 07.08.2019 Площадь "Металлоообработки" за год выросла на 3%, число посетителей - на 8%. Осмотреть даже несколько разделов выставки за один день было невозможно. Журнал"Конструктор. Машиностроитель" постарался не пропустить самые заметные новинки в приводной технике и компонентах для проектирования.
Автоматизация 05.08.2019 Новые разделы - «Робототехника и автоматизация производства» и «Сварка и родственные технологии» пополнят в этом году московскую выставку «Технофорум». Вопросы внедрения промышленных роботов на предприятии будут рассмотрены в рамках семинара «Как роботизировать производство?».